

Kaycha Labs

CBD Bath Soaks Coconut Milk and Rose 3.5oz CBD Bath Soaks Coconut Milk and Rose 3.5oz Matrix: Infused Product

Sample:LA31127007-005

Laboratory License # CBD Sample Size Received: 1 units Retail Product Size: 99 gram

> **Ordered:** 11/20/23 Sampled: 11/27/23 **Completed:** 11/30/23

Harvest/Lot ID: 202311

PASSED

of Analysis Nov 30, 2023 | Inesscents Aromatic

Botanicals

Pages 1 of 7

PRODUCT IMAGE

SAFETY RESULTS

Certificate

PASSED

Residuals Solvents PASSED

PASSED

Water Activity

Moisture

Testing NOT TESTED

MISC.

PASSED

1 unit= 1 CBD Bath Soaks Coconut Milk and Rose 3.5oz

Cannabinoid

Total THC

Total THC/Container: 0.0000 mg

Total CBD

Total Cannabinoids

Total Cannabinoids/Container: 47.5190

													9			
	TOTAL CAN															
	NABINOIDS	CBDVA	CBDV	CBDA	CBGA	CBG	CBD	THCV	THCVA	CBN	D9-THC	D8-THC	CBL	THCA	CBC	CBCA
%	0.0480	<loq< th=""><th><loq< th=""><th>0.0010</th><th><loq< th=""><th><loq< th=""><th>0.0470</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0010</th><th><loq< th=""><th><loq< th=""><th>0.0470</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.0010	<loq< th=""><th><loq< th=""><th>0.0470</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0470</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.0470	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
mg/g	0.480	<l00< th=""><th><l00< th=""><th>0.010</th><th><l00< th=""><th><l00< th=""><th>0.470</th><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<>	<l00< th=""><th>0.010</th><th><l00< th=""><th><l00< th=""><th>0.470</th><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<>	0.010	<l00< th=""><th><l00< th=""><th>0.470</th><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<>	<l00< th=""><th>0.470</th><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<>	0.470	<l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<>	<l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<>	<l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<>	<l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l00<></th></l00<>	<l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<></th></l00<>	<l00< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""></l00<></th></l00<></th></l00<></th></l00<>	<l00< th=""><th><l00< th=""><th><l00< th=""></l00<></th></l00<></th></l00<>	<l00< th=""><th><l00< th=""></l00<></th></l00<>	<l00< th=""></l00<>
ilig/g									•	•						
LOQ	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010
	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%

Extraction date: 11/29/23 08:16:54 Analyzed by: 1525, 1590

Analysis Method: SOP 300.18b Analytical Batch: LA004163POT Instrument Used: LV-SHIM-002 Analyzed Date: 11/29/23 08:23:47

Dilution: 17.5 Reagent: 090523.07; 092823.R01 Consumables: 042c6; 265084 Pipette: LV-PIP-004; LV-PIP-023; LV-PIP-042 $\begin{array}{l} \textbf{Reviewed On:} \ 11/30/23 \ 15:57:22 \\ \textbf{Batch Date:} \ 11/28/23 \ 13:52:00 \\ \end{array}$

binoid analysis utilizing Ultra High Performance Liquid Chromatography with UV Detection (UHPLC-UV). Method SOP 300.23 for sample preparation and SOP 300.18b for analysis. Total THC = d8-THC + d9-THC + 0.877 * THCA, Total CBD = CBD + 0.877 * CBDA

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Soaks Coconut Milk and Rose 3.5oz CBD Bath Soaks Coconut Milk and Rose 3.5oz Matrix : Infused Product

Certificate of Analysis

PASSED

Inesscents Aromatic Botanicals

Sample : LA31127007-005 Harvest/Lot ID: 202311 Sampled: 11/27/23

Ordered: 11/27/23

Sample Size Received: 1 units Completed: 11/30/23 Expires: 11/30/24 Sample Method: SOP Client Method

Page 2 of 7

Terpenes

TESTED

Terpenes	LOQ (%)	mg/g	%	Result (%)	Terpenes	LOQ (%)	mg/g	%	Result (%)
TOTAL TERPENES	0.0200	0.590	0.0590		ALPHA-TERPINEOL	0.0200	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
D-LIMONENE	0.0200	0.340	0.0340		BETA-CARYOPHYLLENE	0.0200	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
LINALOOL	0.0200	0.250	0.0250		BETA-MYRCENE	0.0200	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
BORNEOL	0.0200	<loq< td=""><td><loq< td=""><td></td><th>BETA-PINENE</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><th>BETA-PINENE</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		BETA-PINENE	0.0200	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
CAMPHENE	0.0200	<loq< td=""><td><loq< td=""><td></td><th>CIS-NEROLIDOL</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><th>CIS-NEROLIDOL</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		CIS-NEROLIDOL	0.0200	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
CAMPHOR	0.0200	<loq< td=""><td><loq< td=""><td></td><th>DELTA-3-CARENE</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><th>DELTA-3-CARENE</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		DELTA-3-CARENE	0.0200	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
CARYOPHYLLENE OXIDE	0.0200	<loq< td=""><td><loq< td=""><td></td><th>GAMMA-TERPINENE</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><th>GAMMA-TERPINENE</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		GAMMA-TERPINENE	0.0200	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
CEDROL	0.0200	<loq< td=""><td><loq< td=""><td></td><th>GAMMA-TERPINEOL</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><th>GAMMA-TERPINEOL</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		GAMMA-TERPINEOL	0.0200	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
EUCALYPTOL	0.0200	<loq< td=""><td><loq< td=""><td></td><th>TRANS-NEROLIDOL</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><th>TRANS-NEROLIDOL</th><td>0.0200</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		TRANS-NEROLIDOL	0.0200	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
FARNESENE	0.0200	<loq< td=""><td><loq< td=""><td></td><th>Analyzed by: Weight:</th><td>Extr</td><td>action da</td><td>ate:</td><td>Extracted by:</td></loq<></td></loq<>	<loq< td=""><td></td><th>Analyzed by: Weight:</th><td>Extr</td><td>action da</td><td>ate:</td><td>Extracted by:</td></loq<>		Analyzed by: Weight:	Extr	action da	ate:	Extracted by:
FENCHONE	0.0200	<loq< td=""><td><loq< td=""><td></td><th>879, 1590 1.0756g</th><td>11/3</td><td>0/23 10:</td><td>:44:48</td><td>879</td></loq<></td></loq<>	<loq< td=""><td></td><th>879, 1590 1.0756g</th><td>11/3</td><td>0/23 10:</td><td>:44:48</td><td>879</td></loq<>		879, 1590 1.0756g	11/3	0/23 10:	:44:48	879
FENCHYL ALCOHOL	0.0200	<loq< td=""><td><loq< td=""><td></td><th>Analysis Method : SOP.T.30.061.NV; S</th><td>OP.T.40.061</td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><th>Analysis Method : SOP.T.30.061.NV; S</th><td>OP.T.40.061</td><td></td><td></td><td></td></loq<>		Analysis Method : SOP.T.30.061.NV; S	OP.T.40.061			
GERANIOL	0.0200	<loq< td=""><td><loq< td=""><td></td><th>Analytical Batch: LA004167TER Instrument Used: LV-GCMS-002</th><td></td><td></td><td></td><td>: 11/30/23 12:47:27 11/28/23 18:47:16</td></loq<></td></loq<>	<loq< td=""><td></td><th>Analytical Batch: LA004167TER Instrument Used: LV-GCMS-002</th><td></td><td></td><td></td><td>: 11/30/23 12:47:27 11/28/23 18:47:16</td></loq<>		Analytical Batch: LA004167TER Instrument Used: LV-GCMS-002				: 11/30/23 12:47:27 11/28/23 18:47:16
GERANYL ACETATE	0.0200	<loq< td=""><td><loq< td=""><td></td><th>Analyzed Date : N/A</th><td></td><td>batt</td><td>ii Date .</td><td>11/20/23 10.47.10</td></loq<></td></loq<>	<loq< td=""><td></td><th>Analyzed Date : N/A</th><td></td><td>batt</td><td>ii Date .</td><td>11/20/23 10.47.10</td></loq<>		Analyzed Date : N/A		batt	ii Date .	11/20/23 10.47.10
GUAIOL	0.0200	<loq< td=""><td><loq< td=""><td></td><th>Dilution: 10</th><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><th>Dilution: 10</th><td></td><td></td><td></td><td></td></loq<>		Dilution: 10				
HEXAHYDROTHYMOL	0.0200	<loq< td=""><td><loq< td=""><td></td><th>Reagent: 101223.01; 101223.02</th><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><th>Reagent: 101223.01; 101223.02</th><td></td><td></td><td></td><td></td></loq<>		Reagent: 101223.01; 101223.02				
ISOBORNEOL	0.0200	<loq< td=""><td><loq< td=""><td></td><th>Consumables: 042c6; 262669 Pipette: LV-PIP-027; LV-PIP-028</th><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><th>Consumables: 042c6; 262669 Pipette: LV-PIP-027; LV-PIP-028</th><td></td><td></td><td></td><td></td></loq<>		Consumables: 042c6; 262669 Pipette: LV-PIP-027; LV-PIP-028				
ISOPULEGOL	0.0200	<loq< td=""><td><loq< td=""><td></td><th>Terpene screening is performed using gas</th><td>ch romatoaran</td><td>arrusith na</td><td>acc chacts</td><td>amateu fallowing COD T 20 061 NV and</td></loq<></td></loq<>	<loq< td=""><td></td><th>Terpene screening is performed using gas</th><td>ch romatoaran</td><td>arrusith na</td><td>acc chacts</td><td>amateu fallowing COD T 20 061 NV and</td></loq<>		Terpene screening is performed using gas	ch romatoaran	arrusith na	acc chacts	amateu fallowing COD T 20 061 NV and
NEROL	0.0200	<loq< td=""><td><loq< td=""><td></td><th>SOP.T.40.061.NV.</th><td>ciiioiiiatograpi</td><td>iy witii iii</td><td>ass specu</td><td>officery following SOP.1.50.061.NV and</td></loq<></td></loq<>	<loq< td=""><td></td><th>SOP.T.40.061.NV.</th><td>ciiioiiiatograpi</td><td>iy witii iii</td><td>ass specu</td><td>officery following SOP.1.50.061.NV and</td></loq<>		SOP.T.40.061.NV.	ciiioiiiatograpi	iy witii iii	ass specu	officery following SOP.1.50.061.NV and
OCIMENE	0.0200	<loq< td=""><td><loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
PULEGONE	0.0200	<loq< td=""><td><loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
SABINENE	0.0200	<loq< td=""><td><loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
SABINENE HYDRATE	0.0200	<loq< td=""><td><loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
TERPINOLENE	0.0200		<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
VALENCENE	0.0200		<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
ALPHA-BISABOLOL	0.0200		<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
ALPHA-CEDRENE	0.0200		<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
ALPHA-HUMULENE	0.0200		<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
ALPHA-PHELLANDRENE	0.0200		<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
ALPHA-PINENE	0.0200	<loq< td=""><td><loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
ALPHA-TERPINENE	0.0200	<loq< td=""><td><loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><th></th><td></td><td></td><td></td><td></td></loq<>						
otal (%)			0.0590						

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Soaks Coconut Milk and Rose 3.5oz CBD Bath Soaks Coconut Milk and Rose 3.5oz

PASSED

Matrix : Infused Product

Certificate of Analysis

Sample : LA31127007-005 Harvest/Lot ID: 202311 Sampled: 11/27/23

Sample Size Received: 1 units Ordered: 11/27/23 Completed: 11/30/23 Expires: 11/30/24 Sample Method: SOP Client Method

Page 3 of 7

Pesticides

	P	A	S	S	Е	D
--	---	---	---	---	---	---

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result	Pesticide		LOQ	Units	Action Level	Pass/Fail	Result
ABAMECTIN	0.0500		0.0001	PASS	<loq< td=""><td>CYPERMETHRIN *</td><td></td><td>0.0500</td><td>ppm</td><td>0.0001</td><td>PASS</td><td><loq< td=""></loq<></td></loq<>	CYPERMETHRIN *		0.0500	ppm	0.0001	PASS	<loq< td=""></loq<>
CEQUINOCYL	0.0500		4	PASS	<loq< td=""><td>CYFLUTHRIN *</td><td></td><td>0.0500</td><td>ppm</td><td>2</td><td>PASS</td><td><loq< td=""></loq<></td></loq<>	CYFLUTHRIN *		0.0500	ppm	2	PASS	<loq< td=""></loq<>
IFENAZATE	0.0500		0.4	PASS	<loq< td=""><td>PENTACHLORONITROBENZENE (PCNB)</td><td>*</td><td>0.0500</td><td>ppm</td><td>0.8</td><td>PASS</td><td><l00< td=""></l00<></td></loq<>	PENTACHLORONITROBENZENE (PCNB)	*	0.0500	ppm	0.8	PASS	<l00< td=""></l00<>
FENTHRIN	0.0500	ppm	0.0001	PASS	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
AMINOZIDE	0.0500	ppm	0.0001	PASS	<loq< td=""><td>Analyzed by: 888, 1590</td><td>Weight: NA</td><td>N/A</td><td>on date:</td><td></td><td>Extracted by: N/A</td><td></td></loq<>	Analyzed by: 888, 1590	Weight: NA	N/A	on date:		Extracted by: N/A	
IMETHOMORPH	0.0500	ppm	2	PASS	<loq< td=""><td>Analysis Method : SOP.T.30.101.NV: SO</td><td></td><td>IN/A</td><td></td><td></td><td>14/75</td><td></td></loq<>	Analysis Method : SOP.T.30.101.NV: SO		IN/A			14/75	
TOXAZOLE	0.0500	ppm	0.4	PASS	<loq< td=""><td>Analytical Batch : LA004153PES</td><td>F.1.40.101.NV</td><td></td><td>Reviewed C</td><td>n:11/30/23 14:12:</td><td>36</td><td></td></loq<>	Analytical Batch : LA004153PES	F.1.40.101.NV		Reviewed C	n:11/30/23 14:12:	36	
ENHEXAMID	0.0500	ppm	1	PASS	<loq< td=""><td>Instrument Used : Shimadzu LCMS-8060</td><td>)</td><td></td><td></td><td>:11/27/23 12:29:24</td><td></td><td></td></loq<>	Instrument Used : Shimadzu LCMS-8060)			:11/27/23 12:29:24		
ENOXYCARB	0.0500	ppm	0.0001	PASS	<loq< td=""><td>Analyzed Date: 11/28/23 08:06:53</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Analyzed Date: 11/28/23 08:06:53						
ONICAMID	0.0500	ppm	1	PASS	<loq< td=""><td>Dilution: N/A</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Dilution: N/A						
UDIOXONIL	0.0500	ppm	0.5	PASS	<loq< td=""><td>Reagent: N/A</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Reagent: N/A						
IIDACLOPRID	0.0500	ppm	0.5	PASS	<loq< td=""><td>Consumables: 042c6; 265084</td><td>050</td><td></td><td></td><td></td><td></td><td></td></loq<>	Consumables: 042c6; 265084	050					
YCLOBUTANIL	0.0500	ppm	0.4	PASS	<loq< td=""><td>Pipette: LV-PIP-028; LV-PIP-021; LV-PIP- Pesticide screening is performed using LC-</td><td></td><td>alan malala dida</td><td></td><td>. Data stire life and a</td><td></td><td>all and an</td></loq<>	Pipette: LV-PIP-028; LV-PIP-021; LV-PIP- Pesticide screening is performed using LC-		alan malala dida		. Data stire life and a		all and an
PERONYL BUTOXIDE	0.0500	ppm	3	PASS	<loq< td=""><td>SOP.T.30.101.NV and SOP.T.40.101.NV.</td><td>M5 (Liquid Chromatogra)</td><td>pny with ma:</td><td>s spectrometr</td><td>y Detection) for regu</td><td>liated pesticides i</td><td>ollowing</td></loq<>	SOP.T.30.101.NV and SOP.T.40.101.NV.	M5 (Liquid Chromatogra)	pny with ma:	s spectrometr	y Detection) for regu	liated pesticides i	ollowing
ACLOBUTRAZOL	0.0500	ppm	0.0001	PASS	<loq< td=""><td>Analyzed by:</td><td>Weight:</td><td>Evtracti</td><td>on date:</td><td></td><td>Extracted by:</td><td></td></loq<>	Analyzed by:	Weight:	Evtracti	on date:		Extracted by:	
YRETHRINS	0.0500	ppm	2	PASS	<loq< td=""><td>888, 1590</td><td>NA</td><td>N/A</td><td></td><td></td><td>N/A</td><td></td></loq<>	888, 1590	NA	N/A			N/A	
INETORAM	0.0500	ppm	1	PASS	<loq< td=""><td>Analysis Method : SOP.T.30.151.NV: SO</td><td>P.T.40.151.NV</td><td></td><td></td><td></td><td></td><td></td></loq<>	Analysis Method : SOP.T.30.151.NV: SO	P.T.40.151.NV					
PINOSAD	0.0500	ppm	1	PASS	<loq< td=""><td>Analytical Batch : LA004155VOL</td><td></td><td></td><td></td><td>30/23 15:17:03</td><td></td><td></td></loq<>	Analytical Batch : LA004155VOL				30/23 15:17:03		
PIROTETRAMAT	0.0500	ppm	1	PASS	<loq< td=""><td>Instrument Used : N/A</td><td></td><td>Batc</td><td>h Date:11/27</td><td>/23 12:34:08</td><td></td><td></td></loq<>	Instrument Used : N/A		Batc	h Date:11/27	/23 12:34:08		
HIAMETHOXAM	0.0500	ppm	0.4	PASS	<loq< td=""><td>Analyzed Date: 11/28/23 08:32:29</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Analyzed Date: 11/28/23 08:32:29						
RIFLOXYSTROBIN	0.0500	ppm	1	PASS	<loq< td=""><td>Dilution: N/A Reagent: N/A</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Dilution: N/A Reagent: N/A						
						Consumphies : 042c6: 265094						

Consumables: 042c6; 265084
Pipette: LV-PIP-001; LV-PIP-029; LV-PIP-025
Pesticide screening is performed using GC (Gas and SOP.T.40.151.NV.

Gas Chromatography with Mass Spectrometry Detection) for regulated pesticides following SOP.T.30.151.NV

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Soaks Coconut Milk and Rose 3.5oz CBD Bath Soaks Coconut Milk and Rose 3.5oz

Matrix: Infused Product

Certificate of Analysis

PASSED

Sample : LA31127007-005 Harvest/Lot ID: 202311 Sampled: 11/27/23

Sample Size Received: 1 units Completed: 11/30/23 Expires: 11/30/24 Ordered: 11/27/23 Sample Method: SOP Client Method

Page 4 of 7

Residual Solvents

PASSED

Solvents	LOQ	Units	Action Level	Pass/Fail	Result
PROPANE	50.0000	ppm	499.5	PASS	<loq< th=""></loq<>
BUTANES	100.0000	ppm	499.5	PASS	<loq< th=""></loq<>
HEPTANE	50.0000	ppm	499.5	PASS	<loq< th=""></loq<>
ETHANOL	100.0000	ppm		TESTED	<loq< th=""></loq<>

Reviewed On: 11/30/23 16:19:56 Batch Date: 11/29/23 20:19:32

Analyzed by: 879, 1590 Extraction date: 11/30/23 16:04:56 Extracted by: 0.0192a 879

Analysis Method : SOP.T.40.041.NV Analytical Batch: LA004172SOL Instrument Used: LV-GCMS-001 Analyzed Date : N/A

Dilution: N/A

Reagent: 041420.01; 082123.29; 101421.01

Pipette: 25C, Hamilton Gastight syringe, 25uL; GT6, Hamilton Gastight Syringe, 10 ul

Residual solvent screening is performed by Headspace Gas Chromatography with Mass spectrometry following SOP.T.40.041.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Soaks Coconut Milk and Rose 3.5oz CBD Bath Soaks Coconut Milk and Rose 3.5oz

Matrix: Infused Product

Certificate of Analysis

PASSED

Sample : LA31127007-005 Harvest/Lot ID: 202311 Sampled: 11/27/23

Ordered: 11/27/23

Sample Size Received: 1 units Completed: 11/30/23 Expires: 11/30/24 Sample Method: SOP Client Method

Page 5 of 7

Microbial

Reviewed On:

19:00:35

11/30/23 16:05:03

Batch Date : 11/27/23

Analyzed by:

Dilution: N/A

Extracted by:

Analyte	LOQ	Units	Result	Pass / Fail	Action Level
SALMONELLA			Not Present	PASS	
STEC			Not Present	PASS	
ENTEROBACTERIACEAE	100	cfu/g	ND	PASS	999
YEAST AND MOLD	1000	cfu/g	ND	TESTED	

Analyzed by: Weight: 1.1773g Extraction date: Extracted by: 1662, 1590 11/28/23 13:16:39

Analysis Method: SOP 300.1 Analytical Batch: LA004160MIC

Instrument Used: PCR-001 (Rosalind) (SAL/STEC), PCR-002 (Mullis) (SAL/STEC),LV-PCR-003A (Gene-Up) (Asp),LV-HOOD-3,LV-HOOD-4,LV-HOOD-5

Analyzed Date: N/A

Dilution: N/A

Reagent: 112523.R05; 110923.R08

Consumables: 64546586; 64529385; ASP1689; CSS0004707 Pipette: LV-PIP-017; LV-PIP-026; LV-PIP-019; LV-PIP-034; LV-PIP-046

Analyzed by:	Weight:	Extraction date:	Extracted by:
1396, 1662, 1590, 1663	1.1773g	11/28/23 12:25:53	1663

Analysis Method: SOP 300.1 Analytical Batch: LA004162TYM Reviewed On: 11/30/23 16:05:3
Instrument Used: Micro plating with Flower, Edibles, TincturesBatch Date: 11/28/23 12:08:31 **Reviewed On:** 11/30/23 16:05:34

Standard Dilutions Analyzed Date: N/A Dilution : N/A

Reagent: 112523.R06

Consumables: 33MTTR: 418323060A: 418323077C: 33MC6D

Pipette: LV-PIP-017; LV-PIP-019

Microbial testing is performed by a combination of agar and Petrifilm plating as well as PCR (Polymerase Chain Reaction) to test for Mold/Yeast, Total Aerobic Count, Enterobacteria, Coliforms, Salmonella, Pathogenic E Coli, and Aspergillus

\$\hat{C}_{\text{c}}	M
----------------------	---

ycotoxins

Weight:

Analyte	LOQ	Units	Result	Pass / Fail	Action Level
TOTAL AFLATOXINS (B1, B2, G1, G2)	0.0050	ppm	<loq< th=""><th>PASS</th><th>0.02</th></loq<>	PASS	0.02
OCHRATOXIN A	0.0050	ppm	<loq< th=""><th>PASS</th><th>0.02</th></loq<>	PASS	0.02

Extraction date:

Analysis Method: 300.2 Analytical Batch : LA004154MYC Reviewed On: 11/30/23 15:21:06 Batch Date: 11/27/23 12:31:13

Instrument Used : N/A Analyzed Date: N/A

Reagent: N/A Consumables: 042c6; 265084

Pipette: LV-PIP-004; LV-PIP-030; LV-PIP-009

Total Aflatoxins B1, B2, G1, G2, and Ochratoxin A screening are performed by ELISA (Enzyme Linked

Heavy Metals

PASSED

Metal		LOQ	Units	Result	Pass / Fail	Action Level
ARSENIC		0.1670	ppm	<loq< th=""><th>PASS</th><th>2</th></loq<>	PASS	2
CADMIUM		0.1670	ppm	<loq< th=""><th>PASS</th><th>0.82</th></loq<>	PASS	0.82
LEAD		0.1670	ppm	<loq< th=""><th>PASS</th><th>1.2</th></loq<>	PASS	1.2
MERCURY		0.1670	ppm	<loq< th=""><th>PASS</th><th>0.4</th></loq<>	PASS	0.4
Analyzed by:	Weight:	Extraction date:		E	xtracted	by:
879. 1590	0.4703a	11/28/23 16:46:	39	1	387	

Analysis Method : SOP.T.30.081.NV; SOP.T.40.081.NV

Analytical Batch : LA004166HEA Reviewed On: 11/30/23 08:22:54 Instrument Used : ICPMS-2 Shimadzu Batch Date: 11/28/23 16:41:19

Analyzed Date: N/A Dilution: 50

Reagent: 062823.01; 103023.R10; 081423.48; 010120.01 Consumables: 042c6; 251697

Pipette: LV-BTD-020; LV-BTD-019

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) using method SOP.T.30.081.NV and SOP.T.40.081.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Soaks Coconut Milk and Rose 3.5oz CBD Bath Soaks Coconut Milk and Rose 3.5oz Matrix : Infused Product

PASSED

Certificate of Analysis

Sample : LA31127007-005 Harvest/Lot ID: 202311 Sampled: 11/27/23 Ordered: 11/27/23

Sample Size Received: 1 units Completed: 11/30/23 Expires: 11/30/24 Sample Method: SOP Client Method

Filth/Foreign **Material**

Analyte Filth and Foreign Material			Units detect/g	Result <loq< th=""><th>P/F PASS</th><th>Action Level 0.001</th></loq<>	P/F PASS	Action Level 0.001
Analyzed by: N/A	Weight: NA	Ext N/A	raction date		Extrac N/A	ted by:
Analysis Method: 300. Analytical Batch: N/A Instrument Used: N/A Analyzed Date: N/A		viewed On :	, , -	5:57:31		
Dilution: N/A Reagent: N/A Consumables: N/A Pipette: N/A						

Samples are visually screened for foreign matter (hair, insects, packaging materials, etc.). For flower, stems >3 mm in diameter may only make up <5% of the sample.

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Soaks Coconut Milk and Rose 3.5oz CBD Bath Soaks Coconut Milk and Rose 3.5oz

Matrix : Infused Product

Certificate of Analysis

PASSED

(702) 728-5180

Sample : LA31127007-005 Harvest/Lot ID: 202311 Sampled: 11/27/23 Ordered: 11/27/23

Sample Size Received: 1 units Completed: 11/30/23 Expires: 11/30/24 Sample Method: SOP Client Method

Page 7 of 7

COMMENTS

* Confident Cannabis sample ID: 2311DBL0060.2077

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

