

Kaycha Labs

CBD Bath Fizz Forest Bathing 3.5oz CBD Bath Fizz Forest Bathing 3.5oz

Matrix: Infused Product

Sample:LA31127007-004 Harvest/Lot ID: 142311 Laboratory License # CBD

Sample Size Received: 1 units Retail Product Size: 99 gram

> **Ordered:** 11/20/23 Sampled: 11/27/23 **Completed:** 11/30/23

> > PASSED

Certificate of Analysis

Nov 30, 2023 | Inesscents Aromatic **Botanicals**

Pages 1 of 7

PRODUCT IMAGE

SAFETY RESULTS

Residuals Solvents PASSED

PASSED

Water Activity

Moisture

Testing NOT TESTED

MISC.

PASSED

1 unit= 1 CBD Bath Fizz Forest Bathing 3.5oz

Cannabinoid

Total THC Total THC/Container: 0.0000 mg

Total CBD

Total CBD/Container: 39.6000 mg

Total Cannabinoids .0400%

Total Cannabinoids/Container: 39.6000

	TOTAL CAN	CBDVA	CBDV	CBDA	CBGA	CBG	CBD	THCV	THCVA	CBN	D9-THC	D8-THC	CBL	THCA	СВС	CBCA
%	0.0400	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0400</th><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0400</th><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0400</th><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.0400</th><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0400</th><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<>	0.0400	<loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<>	<l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
mg/g	0.400	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.400</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.400</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.400</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.400</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.400</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.400	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
LOQ	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %	0.0010 %

Extraction date: 11/29/23 08:16:52 Analyzed by: 1525, 1590

Analysis Method: SOP 300.18b Analytical Batch: LA004163POT Instrument Used: LV-SHIM-002 Analyzed Date: 11/29/23 08:23:47

Dilution: 18.5 Reagent: 090523.07; 092823.R01 Consumables: 042c6; 265084 Pipette: LV-PIP-004; LV-PIP-023; LV-PIP-042 $\begin{array}{l} \textbf{Reviewed On:} \ 11/30/23 \ 15:57:26 \\ \textbf{Batch Date:} \ 11/28/23 \ 13:52:00 \\ \end{array}$

binoid analysis utilizing Ultra High Performance Liquid Chromatography with UV Detection (UHPLC-UV). Method SOP 300.23 for sample preparation and SOP 300.18b for analysis. Total THC = d8-THC + d9-THC + 0.877 * THCA, Total CBD = CBD + 0.877 * CBDA

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Fizz Forest Bathing 3.5oz CBD Bath Fizz Forest Bathing 3.5oz Matrix : Infused Product

PASSED

Certificate of Analysis

Inesscents Aromatic Botanicals

Sample: LA31127007-004 Harvest/Lot ID: 142311 Sampled: 11/27/23 Ordered: 11/27/23

Sample Size Received : 1 units Completed : 11/30/23 Expires: 11/30/24 Sample Method : SOP Client Method

Page 2 of 7

Terpenes

TESTED

Terpenes	LOQ (%)	mg/g	%	Result (%)	Terpenes		LOQ (%)	mg/g	%	Result (%)
TOTAL TERPENES	0.0200	0.220	0.0220		BETA-CARYOPHYLLEN	ΙE	0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
ALPHA-PINENE	0.0200	0.220	0.0220		BETA-MYRCENE		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
BORNEOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>BETA-PINENE</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>BETA-PINENE</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>		BETA-PINENE		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
CAMPHENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>CIS-NEROLIDOL</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>CIS-NEROLIDOL</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>		CIS-NEROLIDOL		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
CAMPHOR	0.0200	<loq< th=""><th><loq< th=""><th></th><th>D-LIMONENE</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>D-LIMONENE</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>		D-LIMONENE		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
CARYOPHYLLENE OXIDE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>DELTA-3-CARENE</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>DELTA-3-CARENE</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>		DELTA-3-CARENE		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
CEDROL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>GAMMA-TERPINENE</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>GAMMA-TERPINENE</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>		GAMMA-TERPINENE		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
EUCALYPTOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>GAMMA-TERPINEOL</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>GAMMA-TERPINEOL</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>		GAMMA-TERPINEOL		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
FARNESENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>TRANS-NEROLIDOL</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>TRANS-NEROLIDOL</th><th></th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>		TRANS-NEROLIDOL		0.0200	<loq< th=""><th><loq< th=""><th></th></loq<></th></loq<>	<loq< th=""><th></th></loq<>	
FENCHONE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analyzed by:</th><th>Weight:</th><th>Extr</th><th>action da</th><th>ate:</th><th>Extracted by:</th></loq<></th></loq<>	<loq< th=""><th></th><th>Analyzed by:</th><th>Weight:</th><th>Extr</th><th>action da</th><th>ate:</th><th>Extracted by:</th></loq<>		Analyzed by:	Weight:	Extr	action da	ate:	Extracted by:
FENCHYL ALCOHOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>879, 1590</th><th>1.0435g</th><th>11/3</th><th>0/23 10:</th><th>44:48</th><th>879</th></loq<></th></loq<>	<loq< th=""><th></th><th>879, 1590</th><th>1.0435g</th><th>11/3</th><th>0/23 10:</th><th>44:48</th><th>879</th></loq<>		879, 1590	1.0435g	11/3	0/23 10:	44:48	879
GERANIOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analysis Method : SOP.T</th><th></th><th>.T.40.061.</th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Analysis Method : SOP.T</th><th></th><th>.T.40.061.</th><th></th><th></th><th></th></loq<>		Analysis Method : SOP.T		.T.40.061.			
GERANYL ACETATE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analytical Batch : LA004 Instrument Used : LV-G0</th><th></th><th></th><th></th><th></th><th>: 11/30/23 12:47:32 11/28/23 18:47:16</th></loq<></th></loq<>	<loq< th=""><th></th><th>Analytical Batch : LA004 Instrument Used : LV-G0</th><th></th><th></th><th></th><th></th><th>: 11/30/23 12:47:32 11/28/23 18:47:16</th></loq<>		Analytical Batch : LA004 Instrument Used : LV-G0					: 11/30/23 12:47:32 11/28/23 18:47:16
GUAIOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analyzed Date : N/A</th><th>.1413-002</th><th></th><th>batt</th><th>ii Date .</th><th>11/20/23 10.47.10</th></loq<></th></loq<>	<loq< th=""><th></th><th>Analyzed Date : N/A</th><th>.1413-002</th><th></th><th>batt</th><th>ii Date .</th><th>11/20/23 10.47.10</th></loq<>		Analyzed Date : N/A	.1413-002		batt	ii Date .	11/20/23 10.47.10
HEXAHYDROTHYMOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Dilution: 10</th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Dilution: 10</th><th></th><th></th><th></th><th></th><th></th></loq<>		Dilution: 10					
ISOBORNEOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Reagent: 101223.01; 10</th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Reagent: 101223.01; 10</th><th></th><th></th><th></th><th></th><th></th></loq<>		Reagent: 101223.01; 10					
ISOPULEGOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Consumables: 042c6; 20 Pipette: LV-PIP-027; LV-</th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Consumables: 042c6; 20 Pipette: LV-PIP-027; LV-</th><th></th><th></th><th></th><th></th><th></th></loq<>		Consumables: 042c6; 20 Pipette: LV-PIP-027; LV-					
LINALOOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>ometry following SOP.T.30.061.NV and</th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>ometry following SOP.T.30.061.NV and</th></loq<>							ometry following SOP.T.30.061.NV and
NEROL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>SOP.T.40.061.NV.</th><th>med using gas chr</th><th>omatograpi</th><th>ny with m</th><th>ass spectr</th><th>ometry following SOP.1.30.061.NV and</th></loq<></th></loq<>	<loq< th=""><th></th><th>SOP.T.40.061.NV.</th><th>med using gas chr</th><th>omatograpi</th><th>ny with m</th><th>ass spectr</th><th>ometry following SOP.1.30.061.NV and</th></loq<>		SOP.T.40.061.NV.	med using gas chr	omatograpi	ny with m	ass spectr	ometry following SOP.1.30.061.NV and
OCIMENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
PULEGONE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
SABINENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
SABINENE HYDRATE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
TERPINOLENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
VALENCENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
ALPHA-BISABOLOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
ALPHA-CEDRENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
ALPHA-HUMULENE	0.0200		<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
ALPHA-PHELLANDRENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
ALPHA-TERPINENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
ALPHA-TERPINEOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
Total (%)			0.0220							

Total (%) 0.0220

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Fizz Forest Bathing 3.5oz CBD Bath Fizz Forest Bathing 3.5oz Matrix: Infused Product

PASSED

Certificate of Analysis

Sample : LA31127007-004 Harvest/Lot ID: 142311

> Sampled: 11/27/23 Ordered: 11/27/23

Sample Size Received: 1 units Completed: 11/30/23 Expires: 11/30/24 Sample Method: SOP Client Method

Page 3 of 7

Pesticides

PASSED

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result	Pesticide		LOQ	Units	Action Level	Pass/Fail	Result
ABAMECTIN	0.0500		0.0001	PASS	<loq< td=""><td>CYPERMETHRIN *</td><td></td><td>0.0500</td><td>ppm</td><td>0.0001</td><td>PASS</td><td><loq< td=""></loq<></td></loq<>	CYPERMETHRIN *		0.0500	ppm	0.0001	PASS	<loq< td=""></loq<>
ACEQUINOCYL	0.0500		4	PASS	<loq< td=""><td>CYFLUTHRIN *</td><td></td><td>0.0500</td><td>ppm</td><td>2</td><td>PASS</td><td><loq< td=""></loq<></td></loq<>	CYFLUTHRIN *		0.0500	ppm	2	PASS	<loq< td=""></loq<>
BIFENAZATE	0.0500		0.4	PASS	<loq< td=""><td>PENTACHLORONITROBENZENE (P</td><td>PCNR) *</td><td>0.0500</td><td>ppm</td><td>0.8</td><td>PASS</td><td><l00< td=""></l00<></td></loq<>	PENTACHLORONITROBENZENE (P	PCNR) *	0.0500	ppm	0.8	PASS	<l00< td=""></l00<>
IFENTHRIN	0.0500	ppm	0.0001	PASS	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
AMINOZIDE	0.0500	ppm	0.0001	PASS	<loq< td=""><td>Analyzed by: 888, 1590</td><td>Weight: NA</td><td>N/A</td><td>on date:</td><td></td><td>Extracted by: N/A</td><td></td></loq<>	Analyzed by: 888, 1590	Weight: NA	N/A	on date:		Extracted by: N/A	
IMETHOMORPH	0.0500	ppm	2	PASS	<loq< td=""><td>Analysis Method : SOP.T.30.101.N</td><td></td><td>IN/A</td><td></td><td></td><td>N/A</td><td></td></loq<>	Analysis Method : SOP.T.30.101.N		IN/A			N/A	
TOXAZOLE	0.0500	ppm	0.4	PASS	<loq< td=""><td>Analytical Batch : LA004153PES</td><td>V, 30F.1.40.101.NV</td><td></td><td>Reviewed (</td><td>On:11/30/23 14:12:</td><td>35</td><td></td></loq<>	Analytical Batch : LA004153PES	V, 30F.1.40.101.NV		Reviewed (On:11/30/23 14:12:	35	
ENHEXAMID	0.0500	ppm	1	PASS	<loq< td=""><td>Instrument Used : Shimadzu LCMS</td><td>5-8060</td><td></td><td></td><td>:11/27/23 12:29:24</td><td></td><td></td></loq<>	Instrument Used : Shimadzu LCMS	5-8060			:11/27/23 12:29:24		
ENOXYCARB	0.0500	ppm	0.0001	PASS	<loq< td=""><td>Analyzed Date: 11/28/23 08:06:53</td><td>3</td><td></td><td></td><td></td><td></td><td></td></loq<>	Analyzed Date: 11/28/23 08:06:53	3					
ONICAMID	0.0500	ppm	1	PASS	<loq< td=""><td>Dilution: N/A</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Dilution: N/A						
UDIOXONIL	0.0500	ppm	0.5	PASS	<loq< td=""><td>Reagent: N/A</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Reagent: N/A						
IDACLOPRID	0.0500	ppm	0.5	PASS	<loq< td=""><td>Consumables: 042c6; 265084</td><td>1 DID 050</td><td></td><td></td><td></td><td></td><td></td></loq<>	Consumables: 042c6; 265084	1 DID 050					
YCLOBUTANIL	0.0500	ppm	0.4	PASS	<loq< td=""><td>Pipette: LV-PIP-028; LV-PIP-021; L' Pesticide screening is performed usin</td><td></td><td>and the second state of the</td><td> Cb</td><td> Datastias \ 6</td><td></td><td>- Hamila -</td></loq<>	Pipette: LV-PIP-028; LV-PIP-021; L' Pesticide screening is performed usin		and the second state of the	Cb	Datastias \ 6		- Hamila -
PERONYL BUTOXIDE	0.0500	ppm	3	PASS	<loq< td=""><td>SOP.T.30.101.NV and SOP.T.40.101.N</td><td></td><td>rapny with Ma</td><td>ss spectromet</td><td>ry Detection) for regu</td><td>lated pesticides i</td><td>ollowing</td></loq<>	SOP.T.30.101.NV and SOP.T.40.101.N		rapny with Ma	ss spectromet	ry Detection) for regu	lated pesticides i	ollowing
ACLOBUTRAZOL	0.0500	ppm	0.0001	PASS	<loq< td=""><td>Analyzed by:</td><td>Weight:</td><td>Extract</td><td>on date:</td><td></td><td>Extracted by:</td><td></td></loq<>	Analyzed by:	Weight:	Extract	on date:		Extracted by:	
YRETHRINS	0.0500	ppm	2	PASS	<loq< td=""><td>888, 1590</td><td>NA</td><td>N/A</td><td>on duter</td><td></td><td>N/A</td><td></td></loq<>	888, 1590	NA	N/A	on duter		N/A	
PINETORAM	0.0500	ppm	1	PASS	<loq< td=""><td>Analysis Method : SOP.T.30.151.N</td><td>V: SOP.T.40.151.NV</td><td></td><td></td><td></td><td></td><td></td></loq<>	Analysis Method : SOP.T.30.151.N	V: SOP.T.40.151.NV					
PINOSAD	0.0500	ppm	1	PASS	<loq< td=""><td>Analytical Batch: LA004155VOL</td><td></td><td></td><td></td><td>/30/23 15:17:03</td><td></td><td></td></loq<>	Analytical Batch: LA004155VOL				/30/23 15:17:03		
PIROTETRAMAT	0.0500	ppm	1	PASS	<loq< td=""><td>Instrument Used : N/A</td><td></td><td>Bato</td><td>h Date:11/27</td><td>7/23 12:34:08</td><td></td><td></td></loq<>	Instrument Used : N/A		Bato	h Date:11/27	7/23 12:34:08		
HIAMETHOXAM	0.0500	ppm	0.4	PASS	<loq< td=""><td>Analyzed Date: 11/28/23 08:32:29</td><td>3</td><td></td><td></td><td></td><td></td><td></td></loq<>	Analyzed Date: 11/28/23 08:32:29	3					
RIFLOXYSTROBIN	0.0500	ppm	1	PASS	<loq< td=""><td>Dilution: N/A</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Dilution: N/A						
						Reagent: N/A						

Consumables: 042c6; 265084

Pipette: LV-PIP-001; LV-PIP-029; LV-PIP-025

Pesticide screening is performed using GC (Gas and SOP.T.40.151.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Fizz Forest Bathing 3.5oz CBD Bath Fizz Forest Bathing 3.5oz Matrix : Infused Product

PASSED

Certificate of Analysis

Inesscents Aromatic Botanicals

Sample : LA31127007-004 Harvest/Lot ID: 142311 Sampled : 11/27/23 Ordered : 11/27/23

Sample Size Received: 1 units Completed: 11/30/23 Expires: 11/30/24 Sample Method: SOP Client Method

Reviewed On: 11/30/23 16:19:53 **Batch Date:** 11/29/23 20:19:32

Page 4 of 7

Residual Solvents

PASSED

Solvents	LOQ	Units	Action Level	Pass/Fail	Result
PROPANE	50.0000	ppm	499.5	PASS	<loq< td=""></loq<>
BUTANES	100.0000	ppm	499.5	PASS	<loq< td=""></loq<>
HEPTANE	50.0000	ppm	499.5	PASS	<loq< td=""></loq<>
ETHANOL	100.0000	ppm		TESTED	<loq< td=""></loq<>

 Analyzed by:
 Weight:
 Extraction date:
 Extracted by:

 879, 1590
 0.0175g
 11/30/23 16:04:56
 879

Analysis Method : SOP.T.40.041.NV Analytical Batch : LA004172SOL Instrument Used : LV-GCMS-001 Analyzed Date : N/A

Dilution : N/A

Reagent: 041420.01; 082123.29; 101421.01

Consumables : N/A

Pipette: 25C, Hamilton Gastight syringe, 25uL; GT6, Hamilton Gastight Syringe, 10 ul

Residual solvent screening is performed by Headspace Gas Chromatography with Mass spectrometry following SOP.T.40.041.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Fizz Forest Bathing 3.5oz CBD Bath Fizz Forest Bathing 3.5oz Matrix: Infused Product

PASSED

Certificate of Analysis

Sample : LA31127007-004 Harvest/Lot ID: 142311 Sampled: 11/27/23 Ordered: 11/27/23

Sample Size Received: 1 units Completed: 11/30/23 Expires: 11/30/24 Sample Method : SOP Client Method

Page 5 of 7

Microbial

PASSED

OCHRATOXIN A

Mycotoxins

0.02

Analyte	LOQ	Units	Result	Pass / Fail	Action Level	
SALMONELLA			Not Present	PASS		
STEC			Not Present	PASS		
ENTEROBACTERIACEAE	100	cfu/g	ND	PASS	999	
YEAST AND MOLD	1000	cfu/g	ND	TESTED		

Analyzed by: **Weight:** 1.0994g Extraction date: Extracted by: 1662, 1590 11/28/23 13:16:38

Analysis Method: SOP 300.1 Analytical Batch: LA004160MIC

Instrument Used: PCR-001 (Rosalind) (SAL/STEC), PCR-002 (Mullis) (SAL/STEC),LV-PCR-003A (Gene-Up) (Asp),LV-HOOD-3,LV-HOOD-4,LV-HOOD-5

Reviewed On: 11/30/23 16:05:01 Batch Date : 11/27/23 19:00:35

Analyzed Date: N/A

Dilution: N/A

Reagent: 112523.R05; 110923.R08

Consumables: 64546586; 64529385; ASP1689; CSS0004707 Pipette: LV-PIP-017; LV-PIP-026; LV-PIP-019; LV-PIP-034; LV-PIP-046

Analyzed by:	Weight:	Extraction date:	Extracted by:
1396, 1662, 1590, 1663	1.0994g	11/28/23 12:25:53	1663

Analysis Method: SOP 300.1 Analytical Batch: LA004162TYM Reviewed On: 11/30/23 16:05:3
Instrument Used: Micro plating with Flower, Edibles, TincturesBatch Date: 11/28/23 12:08:31 **Reviewed On:** 11/30/23 16:05:34Standard Dilutions

Analyzed Date: N/A Dilution : N/A

Reagent: 112523.R06 Consumables: 33MTTR: 418323060A: 418323077C: 33MC6D

Pipette: LV-PIP-017; LV-PIP-019

Microbial testing is performed by a combination of agar and Petrifilm plating as well as PCR (Polymerase Chain Reaction) to test for Mold/Yeast, Total Aerobic Count, Enterobacteria, Coliforms, Salmonella, Pathogenic E Coli, and Aspergillus

Analyte

TOTAL AFLATOXINS (B1, B2, G1, G2)

LOO Units Result Pass / Action Fail Level 0.0050 PASS 0.02 ppm

<LOQ PASS

Analyzed by: Weight: **Extraction date:** Extracted by:

0.0050

ppm

Analysis Method: 300.2
Analytical Batch: LA004154MYC Reviewed On: 11/30/23 15:21:02 Instrument Used : N/A Batch Date: 11/27/23 12:31:13 Analyzed Date: N/A

Dilution: N/A

Reagent: N/A Consumables: 042c6; 265084

Pipette: LV-PIP-004; LV-PIP-030; LV-PIP-009

Total Aflatoxins B1, B2, G1, G2, and Ochratoxin A screening are performed by ELISA (Enzyme Linked

Heavy Metals

PASSED

Metal		LOQ	Units	Result	Pass / Fail	Action Level
ARSENIC		0.1670	ppm	<loq< th=""><th>PASS</th><th>2</th></loq<>	PASS	2
CADMIUM		0.1670	ppm	<loq< th=""><th>PASS</th><th>0.82</th></loq<>	PASS	0.82
LEAD		0.1670	ppm	<loq< th=""><th>PASS</th><th>1.2</th></loq<>	PASS	1.2
MERCURY		0.1670	ppm	<loq< th=""><th>PASS</th><th>0.4</th></loq<>	PASS	0.4
Analyzed by: 879, 1590	Weight: 0.4753g	Extraction date:	39		xtracted 387	by:

Analysis Method : SOP.T.30.081.NV; SOP.T.40.081.NV

Analytical Batch : LA004166HEA Reviewed On: 11/30/23 16:07:04 Instrument Used: ICPMS-2 Shimadzu Batch Date: 11/28/23 16:41:19

Analyzed Date: N/A Dilution: 50

Reagent: 062823.01; 103023.R10; 081423.48; 010120.01

Consumables : 042c6; 251697 Pipette: LV-BTD-020; LV-BTD-019

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) using method SOP.T.30.081.NV and SOP.T.40.081.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Glen Marquez

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Fizz Forest Bathing 3.5oz CBD Bath Fizz Forest Bathing 3.5oz Matrix : Infused Product

PASSED

Certificate of Analysis

Inesscents Aromatic Botanicals

Sample: LA31127007-004 Harvest/Lot ID: 142311 Sampled: 11/27/23 Ordered: 11/27/23

Sample Size Received: 1 units Completed: 11/30/23 Expires: 11/30/24 Sample Method: SOP Client Method Page 6 of 7

Filth/Foreign Material

PASSED

Analyte Filth and Foreign Material		LOQ	Units detect/g	Result <loq< th=""><th>P/F PASS</th><th>Action Level 0.001</th></loq<>	P/F PASS	Action Level 0.001
Analyzed by: N/A	Weight: NA	Ext N/A	raction date		Extrac N/A	ted by:
Analysis Method: 300. Analytical Batch: N/A Instrument Used: N/A Analyzed Date: N/A	10		viewed On :		5:57:29	
Dilution: N/A Reagent: N/A Consumables: N/A Pipette: N/A						

Samples are visually screened for foreign matter (hair, insects, packaging materials, etc.). For flower, stems >3 mm in diameter may only make up <5% of the sample.

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Fizz Forest Bathing 3.5oz CBD Bath Fizz Forest Bathing 3.5oz Matrix : Infused Product

PASSED

Certificate of Analysis

Inesscents Aromatic Botanical

(702) 728-5180

Sample: LA31127007-004 Harvest/Lot ID: 142311 Sampled: 11/27/23 Ordered: 11/27/23

Sample Size Received: 1 units Completed: 11/30/23 Expires: 11/30/24 Sample Method: SOP Client Method Page 7 of 7

COMMENTS

* Confident Cannabis sample ID: 2311DBL0060.2076

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

